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Abstract. A super Hill operator with energy-dependent potentials is proposed and the
associated integrable hierarchy is explicitly constructed explicitly. It is shown that in the general
case, the resultant hierarchy is a multi-Hamiltonian system. The Miura-type transformations and
modified hierarchies are also presented.

1. Introduction

During the last decade, the theory of supersymmetric (SUSY) integrable hierarchies has been
an active research subject and consequently, many well known integrable equations have
been extended and many supersymmetric integrable systems have been worked out. Here we
cite SUSY Korteweg–de Vries (KdV) [15, 16], Kadomtsev–Petviashvili [16], Boussinesq [5]
and Ablowitz–Kaup–Newell–Segur systems [21] and refer to [8, 9, 22, 23] and the references
therein for more recent results.

We note that there are basically two ways to construct SUSY integrable systems: by
proposing a Lax operator or by using supercomformal algebras. While in the former case,
the integrability of the resultant hierarchies is guaranteed, it is not the case for the latter.
Also, there are different SUSY extensions: non-extended (N = 1) or extended (N > 2).
We are mainly interested in theN = 1 SUSY integrable systems.

In this paper, we are going to present a large number of SUSY integrable hierarchies
by proposing a proper energy-dependent Hill operator. We remark that the Schrödinger
equation with energy-dependent potential was first studied by Jaulent and Miodek [10] and
that there in the simplest case, the associated nonlinear evolution equations were solved
by means of an inverse scattering transformation. The problem is generalized in [19] and
it is further shown that the resultant flows are bi-Hamiltonian systems. The remarkable
multi-Hamiltonian structures have been explored and Miura-type maps are obtained in a
series of papers by Antonowicz and Fordy [1–3]. The Lie algebraic reason for constructing
a Miura map is provided by Marshall [18] and this subsequently leads to some new results
for the Ito’s system [15]. The most recent result for these hierarchies is their relationship
with the zero sets of the tau function of the KdV hierarchy [17].

The generalizations of linear problems with energy potentials are interesting and begin
with the third-order or Lax operator for the Boussinesq equation [4]. Unlike the Schrödinger
case, one does not have arbitrary polynomial-dependent expansions here and so to have
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interesting results, one only obtains four cases (see [4] for details). Similarly, the Toda
system is generalized in this way [13].

It is interesting to generalize the idea of energy-dependent spectral operator to the
super case. In this regard, Kupershmidt’s spectral problem for super KdV is generalized
[3]. However, Kupershmidt’s KdV is not supersymmetric and it is believed that the
supersymmetric systems are physically relevant.

The aim of this paper is to present SUSY integrable systems resulting from a linear
super operator with energy-dependent potentials. We will show that like the Schrödinger
operator case, the resultant systems are multi-Hamiltonian in nature and have multi-step
modifications. Thus, the remarkable algebraic structures revealed in [1–3] are retained for
our new SUSY systems. The simplest example in this construction includes one of the
N = 2 SUSY KdV system [12].

The paper is organized as follows. In section 2, we propose the linear problem and
construct the related isospectral flows. We also construct the matrix operators which are our
candidates for Hamiltonian operators. In section 3, we proceed to construct the Miura-type
maps which serve as a simple way to prove some of the claims made in section 2. Section 4
contains some interesting examples.

2. The linear problem

We start with the following super linear operator

L = εD3+ uD + α (1)

whereD = ∂ϑ + ϑ∂ is the super derivation withϑ a Grassman odd variable,∂ = ∂/∂x

and ∂ϑ = ∂/∂ϑ ; ε = ε(λ) is a bosonic parameter depending on the spectral parameter
λ; u = u(λ;ϑ, x, t) is the bosonic field andα = α(λ;ϑ, x, t) is fermionic field. Taking
ε = 1, u = 0, our operatorL reduces to the super Hill operator discussed in [20], so we
refer toL as a super Hill operator with a slight abuse of terminology.

To obtain isospectral flows associated withL, we consider the linear problemLψ = 0
together with the time evolution of the wavefunction:

ψt = Pψ P = b∂ + βD + c (2)

whereb andc are bosonic andβ is fermionic.
By simple calculation, we have

Lt − [P,L] = utD + αt − ε(2β − (Db))∂2+ ε(bx + (Dβ))D3

+(ε(Db)x − εβx + ε(Dc)+ u(Db)− 2uβ)D2

−(bux + β(cu)− ε(Dβ)x − εcx − u(Dβ))D
−(bαx + β(Dα)− ε(Dc)x − u(Dc))

and it is easy to see that the usual Lax equationLt = [P,L] will not lead to any consistent
equation. To have meaningful results, we therefore introduce

Q = ((Db)− 2β)D + bx + (Dβ)
and consider

[P,L] +QL = (−ε(Db)x + εβx − ε(Dc))D2+ (bux + β(Du)− ε(Dβ)x
−εcx − u(Dβ)+ (Db)(Du)− 2β(Du)− (Db)α + 2βα

+bxu+ (Dβ)u)D + bαx + β(Dα)− ε(Dc)x − u(Dc)
+(Db)(Dα)− 2β(Dα)+ bxα + (Dβ)α
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thus, we have to choosec = −bx + (Dβ) and then

Lt = [P,L] +QL
gives us

ut = (bu)x − β(Du)− 2ε(Dβ)x + εbxx + (Db)(Du)− (Db)α + 2βα

αt = (bα)x +D(βα)+ ε(Db)xx − εβxx + u(Db)x − uβx + (Db)(Dα)
which can be written neatly as

ut = JR (3)

where

u =
(
u

α

)
R =

(
(Db)− β

b

)
J =

(
2εD3+ 2α − (Du) −ε∂2+ ∂u− αD
ε∂2+ u∂ +Dα α∂ + ∂α

)
. (4)

To obtain evolution equations, we now specify theε, u andα in the following way

ε =
n∑
i=0

εiλ
i u =

n∑
i=0

uiλ
i α =

n∑
i=0

αiλ
i. (5)

Using this choice, equation (3) can be written in the form
n∑
i=0

λiuit =
( n∑
i=0

Jiλ
i

)
R (6)

whereui = (ui, αi)T and

Ji =
(

2εiD3+ 2αi − (Dui) −εi∂2+ ∂ui − αiD
εi∂

2+ ui∂ +Dαi αi∂ + ∂αi
)
. (7)

We assume thatR has following expansion with respect to the spectral parameterλ

R =
m∑
i=0

Rm−iλi

then the coefficients of different powers ofλ of equation (6) give us

u0t = J0Rm

u1t = J0Rm−1+ J1Rm

... (8)

unt = J0Rm−n + J1Rm−n+1+ · · · + JnRm

J0Ri−n + J1Ri−n+1+ · · · + JnRi = 0 i = 0, . . . , m− 1. (9)

From the above systems (8) and (9), we see thatRm is not determined and we have two
basic cases.

(i) un = −1, αn = 0. In this case, the last equation of (8) takes the same form of (9)
with i = m, which enables us to determineRm in principle. This is referred to as the sKdV
case.

(ii) u0 = constant,α0 = (fermionic) constant. This case leads toRm = 0 for
compatibility and is referred to as the super Harry Dym case.

Since the second case can be studied similarly, we will only consider the first case in
detail.
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The evolution equation (8) can be reformed as u0
...

un−1


tm

=
 0 J0

. .
. ...

J0 · · · Jn−1

Rm−n+1
...

Rm

 (10)

and the recursion relation (9) can be written as

BiR(k) = Bi−1R(k+1) i = 1, . . . , n (11)

where

Bi =



0 J0

. .
. ... 0

J0 · · · Ji−1

−Ji+1 · · · −Jn
0

... . .
.

−Jn 0


(12)

and

R(k) = (Rk−n+1, . . . ,Rk)
T

where these operatorsBi are our candidates of Hamiltonian operators. In order to obtain a
Hamiltonian description of the evolution system (10), we need to prove

(i) Bi are Hamiltonian operators;
(ii) JR = 0 admits the formal power series solutionR =∑∞i=0 Riλ

−i ;
(iii) R(i) can be written as variational derivatives of some functionalsHi .
With the assumption that the above statements are proved, we now have

Utm = Bn−kδHm+k k = 0, . . . , n (13)

where U = (u0, . . . ,un−1)
T and δ denotes the variational derivative with respect toU.

Thus, our system is a(n+ 1)-Hamiltonian system.
Now we can prove the statements (ii) and (iii). To this end, we introduceη = D(lnψ),

so thatLψ = 0 becomes

ε(ηx + η(Dη))+ uη + α = 0 (14)

and it is easy to see that (14) has the solutionη =∑s
−∞ η−jλ

j for certain values ofs. It is
also readily seen that eachηj provides us a conserved quantity in principle. Next, we show
that the solution of (14) will supply a set solution forJR = 0.

Proposition 1. For each solution ofη of equation (14), its variational derivative, with
respect to(u, α), provides us with a solution forJR = 0.

Proof. We introduce an additional variabley so that equation (14) is written equivalently
as

u = ε((Dη)− y) α = ε(−ηx − 2η(Dη)+ ηy) (15)

which serves as a map between(u, α) and(y, η). Thus, we have the following formula(
δy
δη

)
= F †

(
δu
δα

)
whereδv = δ

δv
(16)
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and

F = ε
(−1 D

η −∂ − 2ηD − 2(Dη)+ y
)

is the Fŕechet derivative of (15) and† denotes its adjoint.
Performing equation (16) onη and denotingξ = δuη andp = δαη, we obtain

ξ − ηp = 0 ε[(Dξ)+ px + 2η(Dp)− 4(Dη)p + yp] = 1. (17)

We claim that the solution(ξ, p) of (17) provides us with a solution ofJR = 0. To prove
the validity of this claim, we eliminate the variableξ in (17) and have

ε[px + η(Dp)+ yp − 3(Dη)p] = 1. (18)

Differentiating this equation leads to

ε[(Dp)x + (y − 2(Dη))(Dp)+ (Dy − 3ηx + ηy − 3η(Dη)p] = η (19)

and

ε[pxx + (ηx − 2ηy + 5η(Dη))(Dp)+ (yx − 3(Dηx)− η(Dy)+ 3ηηx − y2

+6y(Dη)− 9(Dη)2)p] + y − 3(Dη) = 0. (20)

Now using formulae (19) and (20) and bearing in mind the mapping (15), one can easily
show that

2ε(Dξx)+ 2αξ − (Du)ξ − εpxx − α(Dp)+ (up)x = 0.

Similarly, we can check that

εξxx + uξx +D(αξ)+ 2αpx + αxp = 0

is an identity. These last two equations lead toJR = 0 and the proposition is thus proved.�

Remark. Solvability is justified by supplying a set of solutions as above. So the strategy
used here is different from the pure bosonic case, where one is able to prove this fact
directly ([2]).

3. Miura maps and modifications

To construct the Miura-type map for the systems presented in the last section, we first
consider the basic case:u→ u− λ andα→ α.

By the following factorization

L = (D + θ1)(D + θ1+ θ2)(D + θ2)

we have

u = wx + (Dθ)+ θ(Dw) α = (Dw)x + (Dθ)(Dw) (21)

where we have redefined the coordinatesθ1 = θ andθ2 = Dw for convenience.
The Fŕechet derivation of the map (21) and its adjoint are

m =
(

∂ + θD D − (Dw)
D∂ + (Dθ)D (Dw)D

)
m† =

( −∂ +Dθ D∂ −D(Dθ)
D + (Dw) D(Dw)

)
and we can verify that the following identity holds

mKm† = J
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whereK =
(

0 1
−1 0

)
andJ is given by (4).

Modifying the map (21) with a parameterγ , we have

u = γwx + (Dθ)+ θ(Dw) α = γ (Dw)x + (Dθ)(Dw). (22)

With these defined, we now follow the method presented in [2] and construct the Miura
maps. Since the construction follows closely that presented in [2, 3], we only present the
final results here. Factorizing

J =
n∑
i=0

λiJi

in the following way

J = (m0, m1, . . . , mn)K3k(m
†
0, m

†
1, . . . , m

†
n)

T (23)

where

mi =
(

γi∂ + θiD D − (Dwi)
γiD∂ + (Dθi)D (Dwi)D

)
m
†
i =

(−γi∂ +Dθi γiD∂ −D(Dθi)
D + (Dwi) D(Dwi)

)
and

3k =



1 · · · λk−1

... . .
.

0
λk−1 0

0 λk

0 ..
. ...

λk · · · λn


and comparing the coefficients ofλ of equation (23) we have

εk =
k∑
i=0

γi k = 0, . . . , r − 1 (24a)

εk =
n∑
i=k

γi k = r, . . . , n (24b)

uk = 1

2

k∑
i=0

Wi.k−i αk = 1

2

k∑
i=0

�i,k−i k = 0, . . . , r − 1 (25)

uk = 1

2

n−k∑
i=0

Wk+i,n−i αk = 1

2

n−k∑
i=0

�k+i,n−i k = r, . . . , n (26)

where

Wi,j = (Dθi)+ (Dθj )+ γiwj,x + γjwi,x + θi(Dwj)+ θj (Dwi)
�i,j = (Dwi)(Dθj )+ (Dwj)(Dθi)+ γi(Dwj)x + γj (Dwi)x.

To reduce to the KdV case, we specify

un = −1 αn = 0
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and we chooseθn = −ϑ andwn = 0 for consistency. Thus, the formulae (26) become

uk = −1+ (Dθk)+ ηnwk,x + 1

2

n−k−1∑
i=1

Wk+i,n−i (27a)

αk = −(Dwk)+ ηn(Dwk)x + 1

2

n−k−1∑
i=1

�k+i,n−i . (27b)

Having constructed the maps, we now obtain the following proposition.

Proposition 2. Solving equations (24) forκi , the operatorsBk (12) are related to a constant
coefficient Hamiltonian operator in

Bk = MkB̂k(Mk)
†

whereMk is the Fŕechet derivative of (25) and (27) and

B̂k =


0 −K

. .
.

0
−K 0

0 K

0 ..
.

K 0


whereB̂k has the same block structures asBk (12).

Proof. Direct computation. �

Remarks.
• The Hamiltonian nature of our operatorsBk is proved as a simple corollary of the

above proposition for the generic case. The general case can be proved by taking the limits
as in [2].
• The general Miura map (25) and (27) can be regarded as the decomposition ofn step

elementary maps [2]. In this way, the remarkable picture of [2] (figure 1 of [2]) reappears
here.

4. Examples

In this section, we present some interesting examples. We will concentrate on the simplest
cases, that isn = 1 andn = 2.

4.1. Two component case

In this case, we takeε0 = 1, ε1 = 0 andu(x, t; λ) = u(x, t)− λ andα(x, t; λ) = α(x, t).
Then, we seek the formal solutionη =∑∞i=1 ηiλ

−i of the equation

ηx + η(Dη)+ uη − λη + α = 0

when the first few solutions are

H1 = α H2 = uα H3 = uαx + α(Dα + u2)

which serve as the first Hamiltonians. The corresponding first non-trivial system (t2-flow)
is

ut = −uxx + 2uux + 2(Dα)x αt = αxx + 2(uα)x. (28)
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We note that the above system reduces to the Burgers equation whenα = 0, so it can
be regarded as a supersymmetric Burgers equation. The system (28) indeed is the one
constructed in [6] under the name of the super two-boson system. We also comment that
the next flow (t3-flow) can be transformed to one of anN = 2 supersymmetric KdV equation
[12] by a invertable change of coordinates [14].

The Miura map in the present case is the basic one (21) and the modified system for
(28) is (

w

θ

)
t

=
(

0 1
−1 0

)(
δw
δθ

)
Ĥ2

whereĤ2 = wx(Dθ)(Dw)+ (Dθ)2(Dw)+ (Dw)(Dw)xθ + (Dθ)(Dw)x .
As a new example, we chooseε as before andu = u0 + λu1 and α = λα1 with u0

constant. The Hamiltonian operators are

J0 =
(

2D∂ −∂2+ u0∂

∂2+ u0∂ 0

)
J1 = −

(
2α1− (Du1) −α1D + ∂u1

u1∂ +Dα1 α1D +Dα1

)
.

In this case we seek the formal solution of the formη = ∑∞i=0 ηiλ
−i of equation (14)

and the first two are

H0 = −α1

u1
H1 = u−1

1

((
α1

u1

)
x

−
(
α1

u1

)
D

(
α1

u1

)
+ u0α1

u1

)
.

With u0 = c(constant), we have

u1,t = 2D

(
α1

u2
1

)
x

+
(

1

u1

)
xx

− c
(

1

u1

)
x

α1,t =
(
α1

u2
1

)
xx

+ c
(
α1

u2
1

)
x

.

Interestingly, the above system admits the reductionα1 = 0, which means

vt = −v2(vxx − cvx) (29)

with v = u−1
1 . Equation (29) passes the Painlevé test as shown in [7]. We also note that

when c = 0, equation (29) is discussed in [24] and is in the list of evolution equations
classified in [25] by the symmetry approach.

4.2. Four component case

Now we present the last example—the four component case:ε = 1, u = u0+λu1−λ2 and
α = α0+ λα1. Similarly, we have the Hamiltonians

H1 = α1 H2 = α0+ u1α1 H3 = u0α1+ u2
1α1+ u1α0.

The system is tri-Hamiltonian with

B0 =
(
J1 −J2

−J2 0

)
B1 =

(
J0 0
0 J2

)
B2 =

(
0 J0

J0 J1

)
where

J0 =
(

2D∂ + 2α0− (Du0) −∂2− α0D + ∂u0

∂2+ u0∂ +Dα0 α0∂ + ∂α0

)
J1 =

(
2α1− (Du1) α1D + ∂u1

u1∂ +Dα1 α1∂ + ∂α1

)
J2 =

(
0 −∂
−∂ 0

)
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and the first flow is

u0,t = 2(Dα1)x + 2α0α1− (Du0)α1− u1,xx − α0(Du1)+ (u0u1)x

α0,t = α1,xx + u0α1,x +D(α0α1)+ 2α0u1,x + α0,xu1

u1,t = u0,x + 2u1u1,x

α1,t = α0,x + 2(u1α1)x.

The Miura map here reads as

u0 = w0,x + (Dθ0)+ θ0(Dw0)

α0 = (Dw0)x + (Dθ0)(Dw0)

u1 = (Dθ0)+ (Dθ1)− w0,x + w1,x + θ0(Dw1)+ θ1(Dw0)

α1 = (Dw0)(Dθ1)+ (Dw1)(Dθ0)− (Dw0)x + (Dw1)x (30)

and can be decomposed as follows

u0 = v0,x + (Dµ0)+ µ0(Dv0)

α0 = (Dv0)x + (Dµ0)(Dv0)

u1 = v1

α1 = µ1

and

v0 = w0

µ0 = θ0

v1 = (Dθ0)+ (Dθ1)− w0,x + w1,x + θ0(Dw1)+ θ1(Dw0)

µ1 = (Dw0)(Dθ1)+ (Dw1)(Dθ0)− (Dw0)x + (Dw1)x.

Thus, we have two step modifications here. The modified systems under all these Miura
maps can be easily calculated and we will not present them here.

Remark. The Miura map (30) results from the general construction described in section 3.
It is possible to derive it by linearization of the basic case. Indeed, by linearizing the basic
map (21), we have

u0 = ŵ0,x + (Dθ̂0)+ θ̂0(Dŵ0)

α0 = (Dŵ0)x + (Dθ̂0)(Dŵ0)

u1 = ŵ1,x + (Dθ̂1)+ θ̂0(Dŵ1)+ θ̂1(Dŵ0)

α1 = (Dŵ1)x + (Dθ̂1)(Dŵ0)+ (Dθ̂0)(Dŵ1)

which is equivalent to (30) by a simple transformation, namely

ŵ0 = w0 θ̂0 = θ0 ŵ1 = w1− w0 θ̂1 = θ0+ θ1.
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