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Abstract. A super Hill operator with energy-dependent potentials is proposed and the

associated integrable hierarchy is explicitly constructed explicitly. It is shown that in the general
case, the resultant hierarchy is a multi-Hamiltonian system. The Miura-type transformations and
modified hierarchies are also presented.

1. Introduction

During the last decade, the theory of supersymmetric (SUSY) integrable hierarchies has been
an active research subject and consequently, many well known integrable equations have
been extended and many supersymmetric integrable systems have been worked out. Here we
cite SUSY Korteweg—de Vries (KdV) [15, 16], Kadomtsev—Petviashvili [16], Boussinesq [5]
and Ablowitz—Kaup—Newell-Segur systems [21] and refer to [8, 9, 22, 23] and the references
therein for more recent results.

We note that there are basically two ways to construct SUSY integrable systems: by
proposing a Lax operator or by using supercomformal algebras. While in the former case,
the integrability of the resultant hierarchies is guaranteed, it is not the case for the latter.
Also, there are different SUSY extensions: non-extendéd=( 1) or extended ¥ > 2).

We are mainly interested in th® = 1 SUSY integrable systems.

In this paper, we are going to present a large number of SUSY integrable hierarchies
by proposing a proper energy-dependent Hill operator. We remark that thédSuaer
equation with energy-dependent potential was first studied by Jaulent and Miodek [10] and
that there in the simplest case, the associated nonlinear evolution equations were solved
by means of an inverse scattering transformation. The problem is generalized in [19] and
it is further shown that the resultant flows are bi-Hamiltonian systems. The remarkable
multi-Hamiltonian structures have been explored and Miura-type maps are obtained in a
series of papers by Antonowicz and Fordy [1-3]. The Lie algebraic reason for constructing
a Miura map is provided by Marshall [18] and this subsequently leads to some new results
for the Ito’s system [15]. The most recent result for these hierarchies is their relationship
with the zero sets of the tau function of the KdV hierarchy [17].

The generalizations of linear problems with energy potentials are interesting and begin
with the third-order or Lax operator for the Boussinesq equation [4]. Unlike thebSictger
case, one does not have arbitrary polynomial-dependent expansions here and so to have
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interesting results, one only obtains four cases (see [4] for details). Similarly, the Toda
system is generalized in this way [13].

It is interesting to generalize the idea of energy-dependent spectral operator to the
super case. In this regard, Kupershmidt's spectral problem for super KdV is generalized
[3]. However, Kupershmidt's KdV is not supersymmetric and it is believed that the
supersymmetric systems are physically relevant.

The aim of this paper is to present SUSY integrable systems resulting from a linear
super operator with energy-dependent potentials. We will show that like thédeger
operator case, the resultant systems are multi-Hamiltonian in nature and have multi-step
modifications. Thus, the remarkable algebraic structures revealed in [1-3] are retained for
our new SUSY systems. The simplest example in this construction includes one of the
N = 2 SUSY KdV system [12].

The paper is organized as follows. In section 2, we propose the linear problem and
construct the related isospectral flows. We also construct the matrix operators which are our
candidates for Hamiltonian operators. In section 3, we proceed to construct the Miura-type
maps which serve as a simple way to prove some of the claims made in section 2. Section 4
contains some interesting examples.

2. The linear problem

We start with the following super linear operator
L=eD*+uD+« 1)

where D = 9y + 90 is the super derivation with# a Grassman odd variablé,= 9/dx
anddy = 9/09; ¢ = ¢(1) is a bosonic parameter depending on the spectral parameter
A u = u(r; 9, x,t) is the bosonic field and = «(; 9, x, r) is fermionic field. Taking
¢ = 1,u = 0, our operatorL. reduces to the super Hill operator discussed in [20], so we
refer toL as a super Hill operator with a slight abuse of terminology.

To obtain isospectral flows associated withwe consider the linear probledn), = 0
together with the time evolution of the wavefunction:

v, = Py P=bd+pD+c @)
whereb andc¢ are bosonic an@ is fermionic.
By simple calculation, we have
L —[P,L] = u,D +a, — (2B — (Db))d? + £(by + (D)) D°
+(e(Db)y — eBy + e(Dc) + u(Db) — 2up) D?
—(buy + B(cu) — e(DB)x — ecx —u(DP))D
—(bay + B(Da) — e(Dc)x — u(Dc))

and it is easy to see that the usual Lax equalipe= [ P, L] will not lead to any consistent
equation. To have meaningful results, we therefore introduce

0 = ((Db) —2B)D + b, + (DB)

and consider

[P, L]+ OL = (—&(Db), + eBx — £(Dc))D? + (buy + B(Du) — e(DB).
—ecy —u(DB) + (Db)(Du) — 2(Du) — (Db)a + 2Ba
+bu + (DB)u)D + ba,, + B(Da) — e(Dc), — u(Dc)
+(Db)(Da) — 28(Da) + bya + (DB)a
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thus, we have to choose= —b, + (DB) and then

L, =[P,L]1+ QL
gives us

u; = (bu)y — B(Du) — 26(DP)x + ebyx + (Db)(Du) — (Db)a + 2Ba

o = (ba)x + D(Bar) + &(Db)yy — Py + u(Db)y — upy + (Db)(Dax)
which can be written neatly as

u =JR 3)

() ()

7= 2¢D3 4+ 20 — (Du) —€3%+ du —aD )
o €02+ ud + Du ad + do

To obtain evolution equations, we now specify the: and« in the following way

where

n

EZiS,‘)\.i u ZZM,')J a:idi)\.i. (5)
i=0 i=0

i=0
Using this choice, equation (3) can be written in the form

anxiui,z <Xn:m">R (6)
i=0 i=0

whereu; = (u;, o;)" and
5 (26D%+ 20 — (Dui)  —:0% + 0u; — ;D @
L £0% 4+ u;9 + Du; ;0 + du; '
We assume thdR has following expansion with respect to the spectral parameter

R=) R,
i=0
then the coefficients of different powers bfof equation (6) give us

Ug = JoRy,
Uy = JoRpu—1 + J1R,

' ®)
Uy, = JORmfn + JlRm7n+1 + -+ Jan
JRi -+ MR pi1+ -+ LR =0 i=0....m-1 )

From the above systems (8) and (9), we see Rjatis not determined and we have two
basic cases.

() u, = —1, o, = 0. In this case, the last equation of (8) takes the same form of (9)
with i = m, which enables us to determii, in principle. This is referred to as the sKdV
case.

(i) ug = constant,ag = (fermionic) constant. This case leads ®, = 0 for
compatibility and is referred to as the super Harry Dym case.

Since the second case can be studied similarly, we will only consider the first case in
detail.
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The evolution equation (8) can be reformed as

Uo 0 Jo Ry—nt1
: = : : (20)
Up—1/,, Jo oo Jua Ry
and the recursion relation (9) can be written as
B;R® = B, _;R*+D i=1....n (11)
where
0 Jo
: 0
B — Jo -+ Ji1 (12)
—Jiy1 0 =
0 : .
—J, 0
and

R(k) = (Rk—rH-l! ey Rk)T

where these operato; are our candidates of Hamiltonian operators. In order to obtain a
Hamiltonian description of the evolution system (10), we need to prove

(i) B; are Hamiltonian operators;

(i) JR = 0 admits the formal power series solutih= Y > R;A™";

(i) R® can be written as variational derivatives of some functioftgls

With the assumption that the above statements are proved, we now have

Ui, = By k0 Humix k=0,...,n (13)

whereU = (ug,...,u,_1)" and§ denotes the variational derivative with respectUo
Thus, our system is & + 1)-Hamiltonian system.

Now we can prove the statements (ii) and (iii). To this end, we introdueeD (In ),
so thatLy = 0 becomes

e(ny +n(Dn)) +un+a =0 (14)

and it is easy to see that (14) has the solutjoa Y_* _ n_;A/ for certain values of. It is
also readily seen that eagh provides us a conserved quantity in principle. Next, we show
that the solution of (14) will supply a set solution féfk = 0.

Proposition 1 For each solution of; of equation (14), its variational derivative, with
respect to(u, «), provides us with a solution fafR = 0.

Proof. We introduce an additional variableso that equation (14) is written equivalently
as

u=e((Dn) —y) o = &(—n, — 2n(Dn) + ny) (15)
which serves as a map between «) and(y, ). Thus, we have the following formula

8y \ _ ot (S _ 8
(577) =F (%) wheres, = 5o (16)
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and

F=¢ -1 b
N n —3—29nD—-2(Dn)+y

is the Féchet derivative of (15) antl denotes its adjoint.
Performing equation (16) on and denotingg = §,n and p = §,n, we obtain

E—np=0 e[(D&) + px + 2n(Dp) —4(Dn)p + yp] = 1. (17)

We claim that the solutioi¢, p) of (17) provides us with a solution ofR = 0. To prove
the validity of this claim, we eliminate the variabein (17) and have

e[px +n(Dp) + yp — 3(Dn)p] = 1. (18)
Differentiating this equation leads to

e[(Dp)x + (y — 2(Dm)(Dp) + (Dy — 3n, +ny — 3n(Dn)p] =1 (19)
and
elpax + (nx — 20y + 50(D)(Dp) + (v — 3(Dny) — n(Dy) + 3nn, — y°

+6y(Dn) — (D)) p] +y — 3(Dy) = 0. (20)

Now using formulae (19) and (20) and bearing in mind the mapping (15), one can easily
show that

2e(Déy) + 208 — (Du)é — epxx — a(Dp) + (up)x = 0.
Similarly, we can check that
€&xx +uby + D(aé) + 2ap, +a,p =0
is an identity. These last two equations lead @ = 0 and the proposition is thus proved.

Remark Solvability is justified by supplying a set of solutions as above. So the strategy
used here is different from the pure bosonic case, where one is able to prove this fact
directly ([2]).

3. Miura maps and modifications

To construct the Miura-type map for the systems presented in the last section, we first
consider the basic case:— u — A anda — «.
By the following factorization

L =(D+61)(D+ 61+ 62)(D +6)
we have
u = wy + (DO) + 6(Dw) a = (Dw), + (DO)(Dw) (21)

where we have redefined the coordinadgs= § andd, = Dw for convenience.
The Féchet derivation of the map (21) and its adjoint are

([ 946D  D-—(Dw) i _( —94+D6 Dd— D(DO)
"=\ Do+ (DOD (Dw)D " =\D+((Dw  DDw)

and we can verify that the following identity holds

mKm' = J
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whereK = 81 é and J is given by (4).

Modifying the map (21) with a parameter, we have
u=yw,+ (D) 4+ 6(Dw) a=y(Dw), + (DO)(Dw). (22)

With these defined, we now follow the method presented in [2] and construct the Miura
maps. Since the construction follows closely that presented in [2, 3], we only present the
final results here. Factorizing

J= ixfji
i=0

in the following way

J = (mg, mq, ...,mn)KAk(mg, mg, ...,mjl)T (23)
where
P y;0 +6; D D — (Dw;) mT _ —yi0 + DO; y;Dd — D(D6;)
' viDo + (D6;)D  (Dw;)D ! D + (Dw;) D(Dw;)
and
1 R Y s
: . 0
A1 0
A =
¢ 0 Ak
0 . :
L ¥

and comparing the coefficients afof equation (23) we have

k

=7  k=0...r-1 (242)
i=0
n

8k:ZVi k=r...,n (24b)
i=k
13 1y

uk=§;Wi_k4 ak=§;Qi,kﬂ' k=0,....r=1 (25)
1n—k 1n—k

uk:é;WkH,n—i akZE;QkJri,nfi k=r ...n (26)

where

Wi j = (D) + (D) + yjw; » + yjwix + 6;(Dw;) + 6;(Dw;)
Q;; = (Dw;)(DY;) + (Dw;)(DY;) + yi(Dw;j)y + y;(Dw;)x.

To reduce to the KdV case, we specify

u, = —1 a, =0
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and we choosé, = —¢ andw, = 0 for consistency. Thus, the formulae (26) become
n—k—1

1
uy = —1+ (D) + nywi x + > ; Witin—i (27a)
1 n—k—l
w=4mw+mwmn+ézgmﬂm. (270)

Having constructed the maps, we now obtain the following proposition.
Proposition 2 Solving equations (24) for;, the operator®; (12) are related to a constant
coefficient Hamiltonian operator in
By = M Bu(My)'
where M, is the Féchet derivative of (25) and (27) and

whereék has the same block structures Bs(12).
Proof. Direct computation. O

Remarks

e The Hamiltonian nature of our operatoB; is proved as a simple corollary of the
above proposition for the generic case. The general case can be proved by taking the limits
as in [2].

e The general Miura map (25) and (27) can be regarded as the decompositicatepf
elementary maps [2]. In this way, the remarkable picture of [2] (figure 1 of [2]) reappears
here.

4. Examples

In this section, we present some interesting examples. We will concentrate on the simplest
cases, that iz = 1 andn = 2.

4.1. Two component case
In this case, we takeg = 1, &1 = 0 andu(x, t; A) = u(x,t) — A anda(x, t; A) = a(x, 1).
Then, we seek the formal solution= Y-, n;A~" of the equation
ne+n(Dn)+un—in+a=0
when the first few solutions are
Hi=« Ho = ua Hsz = ua, + a(Da + u?)

which serve as the first Hamiltonians. The corresponding first non-trivial systefow)
is

Uy = —Uye + 2uu, +2(Da), o = Ay + 2(ua),. (28)
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We note that the above system reduces to the Burgers equation avhel®, so it can
be regarded as a supersymmetric Burgers equation. The system (28) indeed is the one
constructed in [6] under the name of the super two-boson system. We also comment that
the next flow (3-flow) can be transformed to one of &h= 2 supersymmetric KdV equation
[12] by a invertable change of coordinates [14].

The Miura map in the present case is the basic one (21) and the modified system for

(28) is
w 0 1 Sw \
(2)-(% o) (5)%

whereH, = w, (D) (Dw) + (DO)2(Dw) + (Dw)(Dw), 0 + (DO)(Dw)s,.
As a new example, we choogeas before and: = ug + Au; anda = Aag with ug
constant. The Hamiltonian operators are

b—( 2pd —982 4+ upd Jo— (20— (Duy) —onD+dus
0=\ 82 + uod 0 1= u1d 4+ Doy a1D+ Day )

In this case we seek the formal solution of the fogre= Y . n; 2~ of equation (14)
and the first two are

o o o o uo
o= =) - ()2 () + )
ui uy/, ui ui ui

With ug = c(constant, we have

1 1
wo(5) (), (2
Uy x Ui/ yx Ui/,
o o
= (ig), ()
Uy /vy uy/,

Interestingly, the above system admits the reductipa= 0, which means
Uy = —0%(Vyx — CUy) (29)

with v = u;*. Equation (29) passes the Pairéetest as shown in [7]. We also note that
when ¢ = 0, equation (29) is discussed in [24] and is in the list of evolution equations
classified in [25] by the symmetry approach.

4.2. Four component case

Now we present the last example—the four component casel, u = ug+ Au; — A% and
o = og + Aaz. Similarly, we have the Hamiltonians

2
Hi =01 Ho = ag + u1a1 H3 = uooy + uq0y + Uig.

The system is tri-Hamiltonian with

(= (J O (0 T
e () me(on) el )

where
o — (2P0 + 200 — (Dug) —32 — agD + dug
0= 32 + u08 + DO[O Oloa + 80[0
Iy = 2000 — (Du1) o1D + 0uy 7, = 0 -9
1= I/tla + D(Xl Ol]_a + 3051 2= —a 0
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and the first flow is

uo; = 2(Day)y + 20001 — (Dug)ay — g xx — g(Du1) + (uou1)
oo = o1 cx + o1y + D(apar) + 200Uy, + o i1
Ui, = ugy + 2u1y x

o1 = 0oy + 2(u101)y-
The Miura map here reads as

uo = wox + (Dbo) + Ho(Dwo)

ag = (Dwo), + (D) (Dwyp)

u1 = (Dbp) + (DO1) — wo x + w1 + 6o(Dw1) + 01(Dwo)

a1 = (Dwo) (Do) + (Dw1) (D) — (Dwo)yx + (Dwy)y (30)

and can be decomposed as follows

ug = v, + (Do) + po(Dvg)
oo = (Dvg)x + (Do) (Do)

up=vg

Q1= (1
and

Vo = Wo

o = 6o

vy = (DBg) + (D61) — wo x + wyx + Op(Dwy) + 61(Dwo)
p1 = (Dwo)(Db1) + (Dw1)(Dbp) — (Dwo)x + (Dwy)y.
Thus, we have two step modifications here. The modified systems under all these Miura

maps can be easily calculated and we will not present them here.

Remark The Miura map (30) results from the general construction described in section 3.
It is possible to derive it by linearization of the basic case. Indeed, by linearizing the basic
map (21), we have

g = o x + (Do) + bo( Do)

a0 = (Do), + (DBo) (Do)

uy = 1, + (D61) + o(Didy) + H1(Dbo)
a1 = (D) + (DO1) (Do) + (Do) (Dir)

which is equivalent to (30) by a simple transformation, namely

Wo = wo ) W1 = w1 —wg 61 =06+ 01.
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